Fine-Tuning of Photoautotrophic Protein Production by Combining Promoters and Neutral Sites in the Cyanobacterium Synechocystis sp. Strain PCC 6803.
نویسندگان
چکیده
Cyanobacteria are photosynthetic cell factories that use solar energy to convert CO2 into useful products. Despite this attractive feature, the development of tools for engineering cyanobacterial chassis has lagged behind that for heterotrophs such as Escherichia coli or Saccharomyces cerevisiae. Heterologous genes in cyanobacteria are often integrated at presumptively "neutral" chromosomal sites, with unknown effects. We used transcriptome sequencing (RNA-seq) data for the model cyanobacterium Synechocystis sp. strain PCC 6803 to identify neutral sites from which no transcripts are expressed. We characterized the two largest such sites on the chromosome, a site on an endogenous plasmid, and a shuttle vector by integrating an enhanced yellow fluorescent protein (EYFP) expression cassette expressed from either the Pcpc560 or the Ptrc1O promoter into each locus. Expression from the endogenous plasmid was as much as 14-fold higher than that from the chromosome, with intermediate expression from the shuttle vector. The expression characteristics of each locus correlated predictably with the promoters used. These findings provide novel, characterized tools for synthetic biology and metabolic engineering in cyanobacteria.
منابع مشابه
Exploring native genetic elements as plug-in tools for synthetic biology in the cyanobacterium Synechocystis sp. PCC 6803
BACKGROUND The unicellular cyanobacterium Synechocystis sp. PCC 6803 has been widely used as a photoautotrophic host for synthetic biology studies. However, as a green chassis to capture CO2 for biotechnological applications, the genetic toolbox for Synechocystis 6803 is still a limited factor. RESULTS We systematically characterized endogenous genetic elements of Synechocystis 6803, includin...
متن کاملFour novel genes required for optimal photoautotrophic growth of the cyanobacterium Synechocystis sp. strain PCC 6803 identified by in vitro transposon mutagenesis.
Four novel Synechocystis sp. strain PCC 6803 genes (sll1495, sll0804, slr1306, and slr1125) which encode hypothetical proteins were determined by transposon mutagenesis to be required for optimal photoautotrophic growth. Mutations were also recovered in ccmK4, a carboxysome coat protein homologue, and me, the decarboxylating NADP(+)-dependent malic enzyme. This is the first report that these kn...
متن کاملReduction of photoautotrophic productivity in the cyanobacterium Synechocystis sp. strain PCC 6803 by phycobilisome antenna truncation.
Truncation of the algal light-harvesting antenna is expected to enhance photosynthetic productivity. The wild type and three mutant strains of Synechocystis sp. strain 6803 with a progressively smaller phycobilisome antenna were examined under different light and CO(2) conditions. Surprisingly, such antenna truncation resulted in decreased whole-culture productivity for this cyanobacterium.
متن کاملIllumination stimulates cAMP receptor protein-dependent transcriptional activation from regulatory regions containing class I and class II promoter elements in Synechocystis sp. PCC 6803.
The cAMP receptor protein (Crp) is a global transcriptional regulator that binds sequence-specific promoter elements when associated with cAMP. In the motile cyanobacterium Synechocystis sp. strain PCC 6803, intracellular cAMP increases when dark-adapted cells are illuminated. Previous work has established that Crp binds proposed Crp target sites upstream of slr1351 (murF), sll1874 (chlA(II)), ...
متن کاملThe malic enzyme is required for optimal photoautotrophic growth of Synechocystis sp. strain PCC 6803 under continuous light but not under a diurnal light regimen.
A mutation was recovered in the slr0721 gene, which encodes the decarboxylating NADP(+)-dependent malic enzyme in the cyanobacterium Synechocystis sp. strain PCC 6803, yielding the mutant 3WEZ. Under continuous light, 3WEZ exhibits poor photoautotrophic growth while growing photoheterotrophically on glucose at rates nearly indistinguishable from wild-type rates. Interestingly, under diurnal lig...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Applied and environmental microbiology
دوره 81 19 شماره
صفحات -
تاریخ انتشار 2015